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CONNECTING RESONANT TRAJECTORIES TO A EUROPA
CAPTURE THROUGH LISSAJOUS STAGING ORBITS

Sonia Hernandez∗, Ricardo L. Restrepo†, and Rodney L. Anderson‡

The current interest in studying the surface of Europa in search of biosignatures
demands efficient strategies in mission design to reach this distant world. An
affordable strategy is to use a low energy moon tour, which has natural access
to the moon via the L2 gateway. Staging around this libration point allows to
decouple the approaching moon tour and the landing trajectory, which enables
the option of designing each phase separately. Furthermore, a staging step frees
the landing time from the capture phase, adding an additional degree of freedom.
Lissajous orbits are the dynamical structures used for these staging orbits. In this
paper, the possible ballistic connections between the resonances from the moon
tour and Lissajous orbits are studied, including the different geometries that allow
for time phasing control.

INTRODUCTION

Scientists are eager to explore Europa, the icy moon of Jupiter, due its potential to harbor life.
Taking in situ measurements is key in the search of biosignatures, for which a probe that lands of
the surface is needed. A low-energy trajectory can provide a fuel efficient mechanism to approach
Europa (typical two-body patched conic design would be too expensive for this type of mission).
To get captured at this moon, a general strategy which has been proposed in the past for orbiter
missions is to use a moon tour after Jupiter insertion to gradually reduce the two-body energy of
the spacecraft. The moon tour involves using three-body gravity assists of Ganymede and Europa
(and in some cases Callisto), in a resonant hopping sequence. Once close enough to Europa, the L2

gateway is the natural access to a capture orbit. Libration point orbits and their manifolds provide
the capture mechanisms and are also useful as staging orbits for phasing purposes. To land on the
surface, an additional phase is required that connects the capture phase to a target landing location.

A lander-type mission can have a lot of mission constraints, including lighting conditions at the
time of landing, staging locations to decouple the approach to Europa, etc. These constraints can
make this quite a complex trajectory to design. For this reason it is preferable to divide the trajectory
design after Jupiter insertion into three separate steps, breaking the highly coupled problem into
independent phases: 1) the moon tour, 2) a low-energy capture in the vicinity of Europa and a
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phasing stage, and 3) the landing.1 The work presented here focuses on the second phase of the
problem.

The dynamical structures used to construct the framework of the capture and phasing are libration
point orbits and their invariant manifolds. The invariant manifolds of unstable periodic orbits at the
L1 and L2 libration points have been shown to be key to understanding the approach problem.
Previous work explored this relationship for the Moon2–5 and for Europa.6, 7 Of the libration point
orbits, the most widely studied dynamical structures are Lyapunov8 and halo9 orbits. Lyapunov
orbits are the most basic libration point orbits, as they are planar, periodic, and centered around L1

and L2. Only one family exists associated to each libration point,8 and within the family, each obit
exhibits a different energy (or Jacobi constant). At a specific energy level, two families of out-of-
plane periodic orbits emerge from a specific Lyapunov: southern and northern halo orbits. A more
complex dynamical structure, called Lissajous orbits, is formed by a combination of an in-plane and
out-of-plane frequency. While Lyapunov and halo orbits are periodic, Lissajous are quasi-periodic
orbits that live in the surface of a torus. Also, while only one orbit per energy level exists for
Lyapunov and halos, the in-plane and out-of-plane amplitude of the Lissajous can be combined to
create multiple sets of continuous families at a fixed energy level. While we explore Lyapunov and
halo orbits as options to get captured at Europa, we focus our efforts on Lissajous orbits because
they allow for a wider set of arrival capture configurations.

Mission Design from a Resonance to Capture/Landing Trajectory

Figure 1 shows a schematic of the second stage of the mission, i.e., the low-energy Europa capture
phase, departing from a resonant orbit, arriving at a staging orbit around L2, and ending with two
different landing scenarios. In this example, the resonant hopping moon tour ends in a 5:6 resonant
orbit∗, from where a ∆v-free low-energy capture is possible. A loosely captured orbit around L2

follows, giving the option of several revolutions around the libration point for phasing purposes.
Following the loose capture, two landing options are represented: a) a free, direct landing trajectory
that departs from the libration orbit, following the natural flow of its unstable manifold,1 and b) a
capture into a stable, two-body orbit around Europa, enabled by an insertion orbit maneuver. In the
latter scenario, the spacecraft can do reconnaissance of Europa before performing the maneuver to
land. If the lander is accompanied by a carrier spacecraft, this scenario also allows for the carrier to
stay in the stable orbit and act as a relay to the lander.

A systematic strategy for the trajectory design of the second stage of the mission is adopted, where
stable and unstable manifolds of libration point orbits are computed to connect the libration staging
orbit with the low-energy resonant capture (propagated backward in time) and the landing/stable
capture (propagated forward in time). The goal of the paper is to determine which resonances
and range of energies freely connect with these libration point orbits by propagating their invariant
manifolds backward in time. This strategy also enables the characterization of different geometry
arrival conditions at the libration point orbit, which in turns allows for a timing leverage, necessary
to land on the surface of Europa at a desired local solar time. In Reference 1, Restrepo et al. studied
Europa landing surface coverage provided by the unstable invariant manifolds of Lissajous orbits
around L2 propagated forward in time (Figure 1(a)). They found that by using a direct landing
approach, almost full coverage of the surface can be achieved. Even though this method provides
a ∆v-free approach, it could be a challenge to navigate the spacecraft to the landing site due to the

∗A 5:6 resonant orbit is defined in this paper as 6 revolutions of the spacecraft around Jupiter for every 5 revolutions
of Europa, in an inertial frame.
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Figure 1. Using libration point orbits to connect the last resonant orbit of a moon
tour with a landing/capture trajectory at Europa.

instability of the manifold and the short amount of time allowed to accurately determine Europa’s
orbit state. For this reason, a scenario where a two-body capture is performed before landing might
desired (Figure 1(b)), where there is ample time to reduce Europa’s state uncertainty, and orbit trim
maneuvers can ensure accurate landing. This last scenario will be documented in future work.

The paper is organized as follows. The first section focuses on Lyapunov and halo orbits as
loose-capture orbit options, where the possible reachable resonances from these periodic orbits are
investigated. Lissajous orbits are the next type of libration point orbit studied and the main focus of
the paper. A database of Lissajous orbits is generated with details presented in the following section.
The next section investigates the possible reachable resonances from Lissajous orbits. Timing and
geometry arrival scenarios are investigated in the following section. The last section concludes the
paper and discusses avenues of future work.

REACHABLE RESONANCES FROM LYAPUNOV AND HALO ORBITS

To begin the study of which resonances are available and at what energy levels, Lyapunov and
halo orbits are used as libration point orbits at L2. The general strategy to approach Europa is
through a sequence of high altitude three-body flybys to reduce the spacecraft’s two-body energy
with respect to Jupiter. For this sequence of flybys to be possible, they have to occur through a set
of resonant sequences in order to guarantee the periodicity of the encounter of the spacecraft with
Europa. Therefore, the leg of the trajectory that connects with the libration point (forward in time)
must be a resonant trajectory. This leg is selected from the set of trajectories that compose the stable
manifolds that arrive at the libration point orbit, and they are computed backward in time.

Computation of Invariant Manifolds of Periodic Orbits The computation of the stable and unsta-
ble invariant manifolds of a periodic orbit are obtained by perturbing each point of the orbit along

3



a specific stable and an unstable direction. This procedure is described in detail in Ref. 10, 11.
The direction of the perturbation is given by the eigenvectors of the monodromy matrix (Φ(T, t0)),
which is the state transition matrix (STM) evaluated after one orbit period (T ). The eigenvalues of
the monodromy matrix of an unstable periodic orbit will in general contain four eigenvalues of unit
magnitude and two that form a complementary pair of asymptotically stable (λ < 1) and unstable
(λ > 1) values. The corresponding eigenvectors associated with the unit magnitude eigenvalues are
a complex conjugate pair and a repeated real pair. The additional two eigenvalues are associated
with two fully real vectors, which are the ones used to excite the stable and unstable motion around
the periodic orbit. The eigenvector Vu(t0) with real eigenvalue greater than 1 provides the unstable
direction; the eigenvector Vs(t0) with reciprocal eigenvalue less than 1 provides the stable direc-
tion. To compute the stable and unstable directions at any point over the orbit, the STM is used as a
linear mapping. For example, the unstable directions along the orbit are given by:

Vu(τ) = Φ(τ, t0)Vu(t0) (1)

where τ is a normalized variable (τ = 0→ 1) introduced to represent the time discretization along
one period of the orbit, such that ti = t0+τT . The manifold trajectories are obtained by propagating
the perturbed states

Xu(τ) = X(τ)± εV̂u(τ) (2)

where V̂u(τ) = Vu(τ)/||Vu(τ)||, and ε is a small parameter (ε << 1) that represents the magni-
tude of the perturbation.

Halo and Lyapunov Orbit Comparison

Lyapunov and halo orbits are computed for a range of Jacobi constants from 3.00318 (low energy)
to 3.001 (high energy), and are shown in Figure 2. The halo and Lyapunov orbit stable manifolds
propagated backward in time are projected into the xy-plane and plotted in Figure 3 for the two
bounding set of energies. It can be seen that the stable manifolds of the halo and Lyapunov orbits
are similar near the upper end of the Jacobi constant range at C = 3.00318. This result is because
the halo orbit at this energy has just bifurcated from the planar Lyapunov orbit family, and it does
not at this point have a very large z component. As the Jacobi constant decreases and the energy
correspondingly increases, the differences in the stable manifold trajectories become more apparent.
At this point, the halo orbit family has a significant component that is out of the plane, and it is
easier to explore the difference by comparing several other parameters related to the period and
orbital elements.

One of the primary considerations in the approach problem for Europa is connecting the approach
trajectory to the last exterior resonance of the endgame. This connection is typically analyzed ini-
tially by considering either the period or the semi-major axis as these quantities provide a good
osculating two-body approximation to the resonance and the corresponding resonant orbit in the
Circular Restricted Three-Body Problem. These quantities are plotted as a function of several dif-
ferent parameters for several selected Jacobi constants across the desired range in Figure 4. As
would be expected from the projection plots in xy the resulting characteristics of the stable man-
ifolds are most similar near the upper range of the Jacobi constants where the orbits themselves
are similar. For lower Jacobi constants, it can be observed that the Lyapunov orbits have the larger
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(a) Halo orbits for a range of energies
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(b) Lyapunov orbits for a range of energies

Figure 2. The Lyapunov and halo orbit families.
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(a) Halo Orbit, C = 3.0010
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(b) Halo Orbit, C = 3.00318
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(c) Lyapunov Orbit, C = 3.0010
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(d) Lyapunov Orbit, C = 3.00318

Figure 3. The Lyapunov and halo orbit stable manifolds plotted for a Jacobi constants J = 3.0018.

range of period and semi-major axis. This is consistent with what was seen in Anderson and Lo7

where the Lyapunov orbits provided a general bounds on the resonance.

This difference in the range of the semi-major axis or period may perhaps be seen even more
clearly by the direct comparison in Figure 5. Noting the differences in the scales, it can be seen
that the semi-major axis range consistently grows for the Lyapunov orbits as the Jacobi constants
decrease. The trend for the halo orbits is different, and the semi-major axis range remains fairly
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Figure 4. The semi-major axis and period of the halo and Lyapunov orbit stable man-
ifold trajectories at the surface of section plotted as a function of various parameters.

(a) Halo Orbit (b) Lyapunov Orbit

Figure 5. Comparison of the range of semimajor axis for the halo orbit and Lyapunov
stable manifolds for various Jacobi constants.
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constant for lower Jacobi constants after some initial growth when the Jacobi constant decreases
from 3.0032. Again, this may be partly explained by the fact that some of the growth of the halo
orbit is now in the z direction and this is likely limiting some of the growth in the stable manifold
semi-major axis that would be expected.

One other parameter that is important in the trajectory design is the location on the orbit (τ ) that
the stable manifold approaches. This quantity is plotted for all of the computed orbits in Figure 6.
For low energy Lyapunov and halo orbits, the behavior plotted is perfectly sinusoidal, repeating after
one orbit period. However, as the energy increases (lower Jacobi constant), this behavior begins to
break down due to the instability of the periodic orbits. For both the halo and Lyapunov orbits orbits,
depending on where you depart the orbit, you may be able to reach different resonances. This result
is key when working on the last resonant orbit of the moon tour.

(a) Halo Orbit (b) Lyapunov Orbit

Figure 6. Location on each orbit that the stable manifold approaches for various
semimajor axis values for a linear offset of 1.0× 10−6.

GENERATING A DATABASE OF LISSAJOUS ORBITS

Lissajous orbits are quasi-periodic structures associated to each of the collinear libration points
of the circular restricted three-body problem (i.e., L1, L2 and L3). These three-dimensional struc-
tures are bounded trajectories constrained to the surface of a two-dimensional object, known as an
invariant torus. Computing the manifolds of an invariant torus can be complicated and computa-
tionally expensive. To simplify the process, individual revolutions (revs) of Lissajous trajectories
are considered as approximate periodic orbits. For each Lissajous rev, approximate stable and un-
stable manifolds are computed by using standard techniques to compute the invariant manifolds of
periodic orbits.10–12 The approximate stable invariant manifolds, propagated backward in time, are
used to connect with the last resonance of the moon tour. Each Lissajous is used as a temporary
station or staging orbit to satisfy the phasing requirement for a capture/landing trajectory. The gen-
eration of Lissajous orbits and their approximate invariant manifolds have been described in detail
in Reference 1 and are briefly summarized here for completeness.

Lissajous orbits are symmetric with respect to the x-y plane and the x-z plane, and can be char-
acterized by an in-plane amplitude Ay and an out-of-plane amplitude Az . Lissajous orbits can be
periodic for exact resonances between the in-plane and out-of-plane frequencies, but in general they

7



are not, and in this case their trajectories can exist at any point in the surface of a two-dimensional
torus. Two initial phases φ and ψ can be used to define a particular trajectory over the torus, where
ψ is a phase associated with the out-of-plane motion and φ to the in-plane phase.13 Figure 7 shows
three different views of a Lissajous orbit propagated for 27 revs, centered around L2 in the Jupiter-
Europa system, with associated amplitudes Ay = 4500 km and Az =4500 km. The initial condi-
tions of the trajectory are such that it begins in the x-y plane at y = 0, that is, ψ = 0◦ and φ = 0◦.
The non-periodicity of the orbit is observed in the y-z view, where the in-plane phase completes
approximately 360◦, but not exactly.

Figure 7. Lissajous orbit example around L2.

A detailed literature review on the history of Lissajous orbits and the different schemes to com-
pute these orbits can be found in Reference 1. The database in this paper embeds a multi-shooting
technique for correcting third and fourth order analytical expansions13 with a third-order expansion
approximation.14 The general structure of a Lissajous torus can be obtained by generating individ-
ual Lissajous revs all around its surface, as shown in Figure 8. Here, one single rev is highlighted in
red. The initial conditions of this Lissajous rev start at the x-y plane (ψ = 0) with φ = 0, and it is
propagated until it completes a full out-of-plane cycle, returning to the x-y plane. To approximate
the global structure of a Lissajous torus, individual revs are generated with a small in-plane phase
difference (∆φ) in their initial conditions. In Figure 8, 200 Lissajous revs are used to approximate a
Lissajous torus with amplitudes Ay =4500 km and Az =4500 km, with a phase shift of ∆φ = 1.8◦

between revs. For simplicity ψ is always set to zero.

Figure 8. Lissajous torus formed by 200 individual revs. Red orbit represents a single
rev, with ψ = 0 and φ = 0.

The database of Lissajous orbits is generated by sweepingAy from 1000 km≤Ay ≤ 12000 km in
500 km intervals andAz from 2000 km≤Az ≤ 12000 km by intervals of 100 km, for a total of 1100
Lissajous. Each Lissajous orbit is constructed with 200 individual revs (each one approximating a
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periodic orbit) for a total database of 220,000 Lissajous revs.

REACHABLE RESONANCES FROM LISSAJOUS ORBITS

Each Lissajous rev, computed as described in the previous section, acts as a good approximation
of a periodic orbit, which allows for the computation of approximate invariant manifolds. The
invariant manifold of an entire Lissajous torus can therefore be approximated by combining the
approximate invariant manifolds of each of the individual revs that approximate the torus.1

Approximate invariant manifolds of Lissajous orbits The intricate process of computing the in-
variant manifolds of an entire Lissajous torus is simplified by combining the approximate invariant
manifolds of the individual Lissajous revs that conform the full torus. The STM is propagated for
each rev from t0 to Trev to obtain an approximate monodromy matrix Φ(Trev, t0). The stable and
unstable invariant manifolds for each Lissajous rev are computed using the same procedure as that
for periodic orbits. Note that due to the symplectic nature of the STM, the eigenvalues of this ap-
proximate monodromy matrix still come in reciprocal pairs. However, the two unity magnitude real
eigenvalues found in a periodic solution no longer exist; they are now near unity, corresponding to
a marginally stable and unstable eigenvector direction. The two remaining real eigenvectors, cor-
responding to highly stable and unstable directions, are the ones used to generate the approximate
invariant manifolds of each Lissajous rev, and Eq. (2) is used to compute the perturbed states.

Figure 9. Schematic of stable manifold propagated backward in time for one Lissajous rev.

Figure 9 shows a schematic of a stable manifold trajectory propagated backwards in time at τj for
one Lissajous rev. Each Lissajous rev is discretized in 100 points from t0 to Trev to generate 100
manifold trajectories per rev. Note that there are directions to perturb (positive and negative) each
eigenvector. The sign of the perturbation is selected such that the stable manifolds move (backward
in time) away from Europa.

Figure 10 shows the stable manifold of one Lissajous rev propagated backward in time. These
trajectories are the ones that connect with the last resonance of the moon tour. In order to determine
the value of the resonance associated to each trajectory, the manifold is propagated backwards in
time until it crosses the negative x-axis, which is used as a Poincare section. Using the state at
this intersection, the osculating semi-major axis with respect to Jupiter is used to determine the
resonance at which each trajectory arrives.

A Lissajous orbit with parameters Ay = 5500 km and Az = 5500 km is used to generate back-
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Figure 10. Backward propagation of the stable manifold of a Lissajous rev.

ward propagated manifolds to determine which resonance values are reachable, using a perturbation
value of ε = 10−6. The Jacobi constant of this Lissajous is J = 3.0031. Figure 11 shows the mani-
folds in a semi-major axis versus τ (i.e., departure location from the Lissajous rev.) plot. The navy
blue represents the solutions for the entire Lissajous (0 ≤ φ ≤ 360◦), whereas the cyan, magenta,
and yellow correspond to specific Lissajous revs at φ = 0◦, φ = 45◦, and φ = 315◦, respectively.
Four families emerge for the entire Lissajous orbit, each family corresponding to a quarter revolu-
tion of Lissajous revs. Figure 13 shows characteristics of the approximate invariant manifold of the
same Lissajous orbit. Figure 13(a) is a plot of the out-of-plane component at the negative x-axis
crossing versus the out-of-plane component at the departure from the Lissajous. Figure 13(b) shows
the set of manifold trajectories in a semi-major axis versus the negative x-axis crossing value. The
same oscillatory behavior as for the Lyapunov and halo families is observed. Figures 13(c) and (d)
show the range of inclination and eccentricity coverage by the set of manifold solutions.

The departure location from the Lissajous rev, respresented as 0 ≤ τ ≤ 1, determines the reso-
nance value reached by the manifold trajectory. For example, in Figure 11, at φ = 45◦ (magenta), a
5:6 resonant is reached by departing at τ = 0.70, a 6:7 is reached at τ = 0.51, and a 7:8 is reached
at τ = 0.38. However, for other Lissajous revs, such as φ = 0◦ (cyan), a 5:6 resonance cannot be
reached for any value of τ . The trajectories that depart the Lissajous rev corresponding to φ = 45◦

at three different τ values are shown in Figure 12. The plot on the left is Jupiter centered, and the
three resonant trajectories are depicted. The plot on the right is a zoomed in view, showing the
departure locations from the Lissajous rev. It is worth noting that not all the revs belonging to the
same Lissajous have the same reachable resonances. Therefore, the selection of the Lissajous rev
for staging purposes has to be carefully selected in the design process.

A similar analysis is done for the entire Lissajous database, and the results are grouped by Ay.
Recall that for each Ay value, the database is generated by sweeping Az from 2000 km ≤ Az ≤
12000 km by intervals of 100 km. Figure 14 shows the backward propagated manifolds in a semi-
major axis versus τ plot. The smallest range of possible resonances reached corresponds to the
Lissajous with smallest Ay. As Ay increases, so does the range of reachable resonant values. For
example, for Ay = 6500 km, the resonances 8:9, 7:8, 6:7, and 5:6 can be reached. This result is
due to the fact that as Ay increases, the Jacobi constant range increases too, covering lower Jacobi
constants, i.e., higher energy levels (see Figure 15(a)). An interesting feature in Figure 14 is that
the semi-major axis values are centered around the 6:7 resonance. In the Jupiter-Europa system,
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Figure 11. Semi-major axis at the negative x-axis crossing vs. departure location
from the Lissajous, for a Lissajous orbit with Ay = 5500 km and Az = 5500 km.

Figure 12. Backward propagated manifold from a Lissajous rev with parameters
Ay = 5500 km, Az = 5500, and φ = 45◦, from three different departing locations,
reaching three different resonant trajectories.

the 6:7 resonance is the only one reachable at the lowest energy level at which free capture/escape
trajectories are possible (J ≈ JL2 , where JL2 is the Jacobi constant of a stationary point located
at L2

15). As the energy increases, other resonant trajectories are reachable. For example, the 5:6
resonance is reachable for Jacobi constants below 3.0033 (Figure 15(a)) or for Ay ≥ 5500 km
(Figure 14).

Figure 15(b) shows the set of manifold trajectories from the Lissajous database in a semi-major
axis versus negative x-axis crossing value. Opposite to Figure 15(a) where the data is spread in a
cone-like area, in (b) all the points are condensed in an approximate line, which is due to purely
geometrical reasons. The periapse for all manifold trajectories is approximately fixed at L2. There-
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Figure 13. Orbit parameters for backward propagated manifold from a Lissajous
orbit with Ay = 4500 km and Az = 4500.

fore, for a fixed semi-major axis, the osculating apoapsis is approximately fixed, and hence, there
is a one-to-one relationship between the x-axis crossing (in the rotating frame) and the semi-major
axis. Figure 15(c) shows the range of inclination and eccentricity coverage by the set of manifold
solutions. For higher amplitude Ay, the range of eccentricity and inclination is larger. The eccen-
tricity is centered at 0.06. Two families become apparent when looking at the data in the semi-major
axis versus eccentricity plot in Figure 15(d). The reason for this is unknown, and the authors are
investigating the reasoning.

Timing and Phasing Control at Lissajous Arrival

In the previous examples, the manifolds were generated using a fixed perturbation ε = 1e − 6.
Note that by fixing the value of ε, a degree of freedom is lost. However, variations in ε, correspond-
ing to different departure times, are equivalent to solutions associated with different values of τ (see
Reference 16). Therefore, ε can be used as a phasing control. Figure 16(a) shows in magenta the
semi-major axis versus τ curve corresponding to the same manifold coming from the Lissajous rev
shown in Figure 11, with Ay = 5500 km, Az = 5500 km, and φ = 45◦. This curve was generated
using ε = 1e − 6, which corresponds to a ∆v = 2 · 10−4 m/s and ∆r = 150 m. Manifold trajec-
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Figure 14. Semi-major axis at the negative x-axis crossing vs. departure location
from the Lissajous, for the entire Lissajous database.

Figure 15. Orbit parameters for backward propagated manifolds for the entire Lissajous database.

tories coming from the same Lissajous rev were generated using different values of ε. The effect of
varying the perturbation size is shown in the same figure, which creates a shift in the phase of the
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sinusoidal behavior of the curve. For example, the resonance 6:7 can be reached at τ ≈ 0.5 when
using a perturbation ε = 1e−6. To reach this same resonance but at τ ≈ 0.25, an ε = 4e−6 can be
used. Therefore, ε can be used as a parameter to control the time of arrival at the staging Lissajous
orbit.

Figure 16(b) shows four different trajectories associated with τ = 0.38 using the four perturbation
sizes shown in the legend in Figure 16(a). The different arrival resonances are apparent. Although
the perturbation magnitude is varying, it is still small enough that is does not change the Jacobi
constant or energy of the trajectories (which is the same than that of its associated Lissajous). Note
that changing the perturbation does not change the amplitude of the sinusoidal-like curves; only a
shift in arrival/departure is achieved. Therefore, the resonances that can be reached from a given
Lissajous rev orbit do not vary under changes on the perturbation. Recall the curve in Figure 11
associated to φ = 0◦ (cyan). From this Lissajous rev, only resonances 6:7 and 7:8 can be reached,
no matter which values of τ or ε are used. Figure 16(c) shows four different manifold trajectories,
leaving at different τ values, using the four perturbation sizes shown in the legend in Figure 16(a).
All the trajectories here arrive at a 5:6 resonance, showing how it is possible to control the arrival
phasing at the Lissajous orbit by varying the perturbation size.

CONCLUSION

This paper investigates libration point orbits at L2 in the Jupiter-Europa system as staging orbits
to connect to the last resonance of a moon tour. This strategy allows the decoupling of the moon
tour phase with the capture/landing phase in order to satisfy multiple requirements. The strategy is
based on the computation of invariant manifolds of libration point orbits, that, propagated backward
in time, can be used as free capture connections with the moon tour.

The libration point orbits used are Lyapunov, halo, and Lissajous orbits. Lissajous orbits have
been found to give more flexibility in the design and for phasing control. The computation of ap-
proximate invariant manifolds of the Lissajous torus is obtained by computing approximate invariant
manifolds of individual Lissajous revs, allowing for a simple, systematic strategy. Multiple reso-
nances can be reached from a single Lissajous orbit, and the range of resonances depends directly
on the Lissajous dimension, i.e. in-plane and out-of-plane amplitude. By parametrizing the depar-
ture location from a Lissajous rev, a direct control over the specific desired resonance to be reached
is possible. It was found that different revs belonging to a same Lissajous rev produce a different
range of reachable resonances. A timing control on when to arrive at the Lissajous rev from a same
resonant trajectory is possible by varying the perturbation size of the departing invariant manifold
(which is propagated backward in time). This allows for freedom in staging at the Lissajous orbit,
which is key in desiginign a landing trajectory at the desired location and local solar time.
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(a) Semi-major axis at the negative x-axis crossing vs. departure location from the Lissajous rev. Perturbation sizes and
equivalent velocity and position displacement are noted in the legend.

(b) Manifold trajectories reach different resonances when departing from the same τ = 0.38 at different ε.

(c) Manifold trajectories reach the same 5:6 resoance when departing from different τ and propagated at different ε.

Figure 16. Backward propagated manifolds from a Lissajous rev with parameters
Ay = 5500 km, Az = 5500 km, φ = 45◦ with varying ε values.
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